

Tuesday, March 1

7.2020

Renewable Hybrids GE Renewable Energy

4 to ENCUENTRO INTERNACIONAL DE ENERGÍAS RENOVABLES

Liderando la Transición Energética

Luiz Fernando Biagini - Solar Sales leader LATAM

Renewable Energy is Mainstream

WIND & SOLAR CHEAPEST ENERGY SOURCES FOR 2/3 OF THE WORLD

Most competitive source of new bulk generation in 2019

Wind and Solar projected LCOE (\$/MWh, 2018 real)

2025 2030 2035 2040 2045 2050

WIND, SOLAR & STORAGE **INSTALLS CONTINUE TO GROW**

Projected Capacity Additions 2019-2030

Increased RE penetration requires improved dispatchability, grid stability & efficiency/affordability that Hybrid Systems can

Integrating Storage

2

- **Renewables curtailed** ES charged with free or negative priced energy
- Peak Load ES discharged during peak demand

Spinning Reserve – ES discharged during dynamic events

Frequency Regulation – ES continuously charged and discharged to maintain grid stability

Integrating Wind and Solar

Leveraging complementarity of Wind and Solar to:

- Increase Capacity Factor
- Optimize EBOP and interconnection
- Optimize use of land
- Improve combined LCOE

Hybrids System Design Process

SITE CONDITIONS AND OPTIMIZATION RESTRICTIONS

- Resource data
- Topography
- Energy demand/load profile
- Restrictions: POI size, land availability, required return

- Energy resource assessment
- Curtailment analysis
- Correlation analysis
- Economic evaluation
 - CAPEX Synergies
 - OPEX Synergies

Continuous customer feedback

OPTIMIZED HYBRID PROJECT

- Hybrids sizing
- System design
- Operational strategy

Hybrid Control Systems

The Hybrid Control System is a multi-layer supervisory controller by which co-located wind, solar, storage and/or other generation assets are integrated at the farm level to meet their desired use cases e.g. power firming, load following and energy shifting.

GRID COMPLIANT

LOWER CAPEX & FASTER RESPONSE

Integrated controls to maximize Customer revenue and/or battery life

GE has all the components to play in Hybrids

How?

- Hybrid site configuration, design, engineering, optimization
- Provision of hybrid hardware (wind turbines, solar modules, inverters etc.) and related operations & maintenance services
- Provision of engineering, procurement and commissioning services, when required
- Design of a Hybrid Controls architecture / GE Hybrid Controller incl. Hybrids Dashboard and reporting
- A single contract and set of guarantees

Solar Plant APM *Improve Solar Asset Performance & Reliability and Reduce Operating Cost & Risk*

Solar Plant APM Improve Solar Asset Performance and Reliability, Reduce Operating Cost and Risk

With power purchase agreement (PPA) prices dropping rapidly, reducing maintenance costs and maximizing power production is critical for PV plant profitability. How do you determine if your assets are performing at their full potential and what are the right maintenance strategies to sustain viable ROI for your PV assets and reduce operating risk

With GE's Solar Plant APM, you will be able to:

- Understand Performance Gaps
- Identify Areas for Improved Performance

Increase in

plant staff

productivit

Adopt Predictive, Proactive Maintenance Strategies

20%

Reduction

in O&M

Expense

40%

Reduction

in power

production

loss

÷

*Based on a case study for a 100 MWac site at \$10k annual O&M cost, \$35/MWh PPA rate and other data source © 2019 General Electric Company - All rights reserved

Solar Plant APM Features

OEM Agnostic Features

Connectivity & Data Management

Connectivity solution Edge analytics Asset hierarchy Asset registry 2 Year Data storage Data mining and analysis Monitoring & Diagnostics Persona-based dashboards Asset status and KPIs Condition monitoring Benchmarking Faults analysis Alert/Alarm management Case management Recommendation management Standard & Customized Reports

Advanced Analytics

Comparative analytics Performance modeling Production loss breakdown Forecasting analytics Soiling analytics Optimized cleaning schedule

OEM Specific Features

Predictive Analytics

IGBT thermal analytics Cooling system health analytics Capacitor lifetime analytics Predictive alert dashboard Predictive alert notifications Intelligent asset strategy

Product Offering Tier 1

Product Offering Tier 2

Mobility | Cloud Services & Applications | IT Security | Software Development Kit

Predix Cloud

Predix Edge Optimizing Controls Applications Edge Applications

© 2019 General Electric Company - All rights reserved

Cyber Security Identify | Defend | Protect

© 2019 General Electric Company - All rights reserved

DIGITAL SERVICES FOR SOLAR

Connectivity Architecture

Solar Plant APM

Understand Performance Gaps

Solar Plant APM performs analysis on digital twins of site assets in real-time to determine deviations from expected KPIs at any operating point and environmental condition.

40%

Reduction in power production loss

PERFORMANCE OVERVIEW

Solar Plant APM

Identify Areas for Improved Performance

Machine learning-based signature detection algorithms automatically quantify and categorize each cause of production loss, providing insight to enable better maintenance strategies.

~70% of the utility-scale power plants production loss is due to inverter failure*

40% Reduction in power

production loss

Solar Plant APM

Adopt Predictive, Proactive Maintenance Strategies

With the use of machine learning, as data is processed, alerts are generated well before component failures, reducing unplanned downtime and costly emergency repairs.

Total O&M cost: 6k/MW/year - 10k/MW/year*

RY E	VENT ANALYSIS											
	47 open			12 CRITICAL			15 warnings			20 INFORMATIONAL		
	Asset	Alert Name	Severit	y	Opened at			Claimed?	MTTR (in Hours	s) N	laterial Cost	Labor Cost
	BLK2_INV4	Open Circuit	INFO	RMATIONAL	2018-05-18 1	2:22 PM		Yes		2.63	\$329.69	\$596.7
	BLK4_INV2	Booster Temp Trip	INFO	RMATIONAL	2018-05-18 12:06 PM		Yes	6.22	6.22	\$379.83	\$1412.4	
	BLK1_INV6	Open Circuit	CRIT	CAL	2018-05-18 1	11:19 AM		No		4.6	\$113.99	\$480.6
	BLK2_INV10	Temp Sensor Failure	INFO	COOLANT SYSTEM				Yes		5.74	\$375.42	\$1057.4
	BLK4_INV9	Ground Fault Fuse	INFO		RE LEAKAGE IDENTIFIED			Yes		5.7	\$474.82	\$1501.7
	BLK4_INV6	Booster Current Trip	INFO	85ı				Yes		1.66	\$425.29	\$1978.0
	BLK4_INV8	Reactor Switch Open	INFO	TOTAL VO	DLUME CURRENT \	OLUME		Yes		6.47	\$159.28	\$1856.2
	BLK3_INV6	Booster Temp Trip	WAR	IGBIS IREND	ATURE SPREAD	AST 2 WEEKS		No		7.96	\$231.74	\$1187.7
	BLK3_INV1	Booster Current Trip	INFO					No		5.15	\$492.09	\$1616.4
	BLK2_INV6	Reactor Switch Open	INFO	age KPI				No		4.64	\$118.95	\$422.3
	BLK2_INV3	Capacitor Leakage	INFO	Aver				No		6.64	\$140.33	\$1947.
	BLK7_INV9	Reactor Switch Open	INFC	2. May 4. May 6. May 8. May	10. May 12. May 14. Ma			Yes		5.76	\$477.69	\$634.9
	BLK7_INV2	Booster Current Trip	INFC	CAPACITORS TREND				Yes		6.26	\$237.6	\$1488.9
	BLK7_INV2	Booster Current Trip	INFC	4 DC				Yes		6.26	\$237.6	\$1488.9
	BLK1_INV1	Line Temp Trip	WAR	PSU1 PSU	2 PSU3	P504		Yes		2.88	\$330.47	\$1192.4
				12 AC								

200 мwp 100 км² 7 ^{SEP} 15:00 ^{-08:00} дмт

30%

20%

Increase in Plant Manager productivity

Reduction i O&M costs

SITE SUMMARY Bright Ridge

California, US

EVENTS S

39°36'19.7"N 123°12'22.7"W

Solar Plant APM Predictive Analytics

Eliminates unplanned downtime, optimizes maintenance Increase revenue and lower O&M costs

Cooling system health

- System alerts on Day 0
- Severity increases on Day 79
- Inverter fixed on Day 112<- de-rated for 33 days

IGBT Heat Stress

- System alerts on Day 0
- Severity increases on Day 16
- Inverter derated on Day 50

Solar Plant APM Predictive Analytics

Eliminates unplanned downtime, optimizes maintenance Increase revenue and Iower O&M costs

Predictive Analytics Covered (specific to GE inverters):

- AC Cap lifetime
- DC Cap lifetime
- IGBT overheat
- IGBT lifetime thermal cycles
- (ge)
- IGBT lifetime power cycles

- Coolant leakage
- Low coolant volume
- Inverter Efficiency or Performance Problem
- DC Cabinet Cooling Problem
- Loss of AC power output

- Loss of DC Power
- AC Cabinet cooling problem
- AC reactor winding
 Temperature problem
- Auxiliary Problem
- Overcurrent Problem © 2019 General Electric Company - All rights reserved

- Phase Current Imbalance
- Line Current Imbalance
- Power Electronics Issue

